Abstract

Sr0.97La0.02TiO3 ceramics with samll amounts of NiNb2O6 additives were prepared by the traditional solid state sintering method, and the phase purity, microstructure, dielectric properties and energy storage behavior of the NiNb2O6-added Sr0.97La0.02TiO3 ceramics were investigated. The results show that the grain size of the ceramics firstly decreases and then increases with increasing NiNb2O6 concentration. The average grain size reaches 0.55 um for the sample with 4.5 wt% NiNb2O6. Moreover, impedance spectroscopy (IS) analysis was employed to study the electrical conductive behavior of NiNb2O6-doped Sr0.97La0.02TiO3 ceramics. IS results reveale that the NiNb2O6-doped Sr0.97La0.02TiO3 ceramic has large R gb /(R gb + R g ) ratios due to the decreased grain sizes. The breakdown strength is notably improved, and the highest breakdown strength of 324 kV/cm can be achieved for the sample with 4.5 wt% NiNb2O6 additive. The Sr0.97La0.02TiO3 sample with 4.5 wt% NiNb2O6 possesses the maximum theoretical energy density of 1.36 J/cm3, which is about 2 times higher than that of pure SrTiO3 in the literature. And its energy storage efficiency reaches 91.4 % under applied electric field of 80 kV/cm. This study provides the NiNb2O6 added ceramic as an attractive candidate for making high-energy density capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.