Abstract
Background Slow waves originate from the pacemaker network of the interstitial cells of Cajal (ICC) and determine the direction and velocity of propagation of peristaltic activity of the gastrointestinal (GI) tract. The enteric nervous system (ENS) and smooth muscle cells are known to interface with ICCs through excitatory and inhibitory neurotransmitters. Electrogastrography (EGG) can be used to record gastric myoelectrical activity (GMA) and reveals slow wave information, in terms of frequency and power. GMA has been studied in conscious rabbits, dogs, rats, and ferrets, but rarely in mice. Nicotine was used to activate ganglia in an attempt to modulate excitatory and inhibitory neurons linked to ICC functioning. The aim of the present study, therefore, was to define the characteristics of GMA in mice, and to establish criteria for analysis.
Highlights
Slow waves originate from the pacemaker network of the interstitial cells of Cajal (ICC) and determine the direction and velocity of propagation of peristaltic activity of the gastrointestinal (GI) tract
For the baseline recording of the vehicle and nicotine treatment groups, 40.9-41.8 % of the power was in the normogastric range (DF ± 2 cpm). 9.1-9.7 % and 26.626.6 % of the power was in the bradygastric (0 to dominant frequency (DF)-2 cpm) and tachygastric ranges (DF+2 to 15 cpm), respectively
Saline had no effect on slow waves during the experiment (n=8; P>0.05)
Summary
Slow waves originate from the pacemaker network of the interstitial cells of Cajal (ICC) and determine the direction and velocity of propagation of peristaltic activity of the gastrointestinal (GI) tract. The enteric nervous system (ENS) and smooth muscle cells are known to interface with ICCs through excitatory and inhibitory neurotransmitters. Electrogastrography (EGG) can be used to record gastric myoelectrical activity (GMA) and reveals slow wave information, in terms of frequency and power. GMA has been studied in conscious rabbits, dogs, rats, and ferrets, but rarely in mice. Nicotine was used to activate ganglia in an attempt to modulate excitatory and inhibitory neurons linked to ICC functioning. The aim of the present study, was to define the characteristics of GMA in mice, and to establish criteria for analysis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.