Abstract

Upcycling waste plastics into carbon nanotubes (CNTs) and hydrogen is attractive for its efficient disposal. Although Ni-based catalysts are typically used in both hydrogen production and CNT synthesis, few studies have investigated the catalytic active site for the co-production of CNTs and hydrogen by waste plastic gasification. To evaluate the effect of nickel species distribution of the Ni/Al2O3 catalyst, it was prepared by an impregnation method using different calcination atmospheres to determine their feasibility for the co-production of CNTs and hydrogen. For comparison, various Ni/Al2O3 catalysts for CNT growth were examined by CH4 thermal chemical vapor deposition (CVD). Ni/Al2O3 calcined under a reductive H2 atmosphere (H–Ni/Al2O3) gave smaller nickel nanoparticles containing metallic nickel species, which showed optimal performance for CNT and hydrogen co-production by waste plastic gasification. In addition, the quality of the CNTs was higher using this process compared to the CNTs synthesize...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.