Abstract

Potassium ions decrease the transport rate of ammonium ions into myeloma and hybridoma cells, one effect of the involved transport processes being an increased energy demand (Martinelle and Häggström, 1993; Martinelle et al., 1998b). Therefore, the effects of K+ and NH4+ on the energy metabolism of the murine myeloma cell line, Sp2/0-Ag14, were investigated. Addition of NH4Cl (10 mM) increased the metabolism via the alanine transaminase (alaTA) pathway, without increasing the consumption of glutamine. As judged by the alanine production, the energy formation from glutamine increased by 155%. The presence of elevated concentrations of KCl (10 mM) was positive, resulting in a decreased uptake of glutamine (45%), and an even larger suppression of ammonium ion formation (70%), while the same throughput via the alaTA pathway (and energy production from glutamine) was retained as in the control culture. However, the simultaneous presence of 10 mM K+ and 10 mM NH4+ was more inhibitory than NH4Cl alone; an effect that could not be ascribed to increased osmolarity. Although the culture with both K+ and NH4+ consumed 60% more glutamine than the culture with NH4+ alone, the energy generation from glutamine could not be increased further, due to the suppression of the glutamate dehydrogenase pathway. Furthermore, the data highlighted the importance of evaluating the metabolism via different energy yielding pathways, rather than solely considering the glutamine consumption for estimating energy formation from glutamine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call