Abstract

The NH3 oxidation and reduction process are experimentally and kinetically studied in this paper. It is found that NH3 has contributions not only to N2O formation, but also to N2O destruction in certain conditions. The main product of homogeneous NH3 oxidation is found to be NO rather than N2O, but some bed materials and sulphur sorbents have catalytic contributions to N2O formation from NH3 oxidation. In reduction atmosphere, NH3 can promote the KC destruction. It is deduced that the ammonia injection into fluidized bed coal combustion flue gas can decrease both NOx and N2O emissions. The ammonia injection process is kinetically simulated in this study, and the reduction rates of NOx and N2O are found to depend on temperature, O2 concentration, initial NOx and N2O concentrations, and amount of injected ammonia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.