Abstract

Fe-(2.25-12)Cr-2W-V, Ta low activation ferritic steels (JLF series steels) were developed in the fusion materials development program of Japanese universities. Microstructural observations, including precipitation response, were performed after neutron irradiation in the FFTF/MOTA. The preirradiation microstructure was stable after irradiation at low temperature (< 683 K). Recovery of martensitic lath structure and coarsening of precipitates took place above 733 K. Precipitates observed after irradiation were the same as those in unirradiated materials in 7–9Cr steels, and no irradiation induced phase was identified. The irradiation induced shift in DBTT in the 9Cr-2W steel proved to be very small which is a reflection of stable precipitation response in these steels. A high density of fine α' precipitates was observed in the 12Cr steel which might be responsible for the large irradiation hardening found in the 12Cr steel. Void formation was observed in 7–9Cr steels irradiated at 683 K, but the amount of void swelling was very small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call