Abstract
We investigate to what extent the oscillation or conversion of neutrinos enhances the expected event rate of the supernova relic neutrino background (SRN) at the SuperKamiokande detector (SK). The SRN [Formula: see text] can be almost completely exchanged with vμ-like neutrinos by the MSW oscillation under the inverse mass hierarchy with Δm2~ 10−8–105[eV2], or by the magnetic moment of Majorana neutrinos with μv≳10−12μB and Δm2~10−4–10° [eV2]. In the standard calculation of the SRN flux, the event rate of the SRN [Formula: see text] at the SK in the observable energy range of 15–40 MeV can be enhanced from 1.2 yr−1 to 2.4 yr−1 if all [Formula: see text] are exchanged with vμ-like neutrinos. The enhancement is prominent especially in the high energy range (≳ 25 MeV). In the astrophysically optimistic calculation, the event rate becomes as high as 9.4 yr−1. Because the theoretical upper bound of the SRN events without oscillation is about 5 yr−1 taking into account the various astrophysical uncertainties, we might have to resort to the neutrino oscillation if more than 5 events in a year, as well as a significantly harder spectrum, were observed in the SK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.