Abstract

Previous research indicates that opioid receptor blockade diminishes the effects of neuropeptide Y (NPY) on feeding and memory. Conversely, NPY attenuates naloxone-precipitated morphine withdrawal. The present study evaluated the effects of NPY on the discriminative stimulus and antinociceptive effects produced by the prototypical mu opioid, morphine. Rats were trained to discriminate 5.6 mg/kg morphine (IP) from saline using a standard two-lever, food-reinforced, drug discrimination procedure. Across a range of doses (3.0, 5.0, and 10 μg), intracerebroventricular (ICV) injection of NPY failed to substitute for, antagonize, or potentiate the discriminative stimulus effects of morphine. A warm-water tail-withdrawal procedure was used to examine the antinociceptive effects of morphine and NPY, alone and in combination. NPY (3.0 and 10 μg, ICV) failed to alter tail-withdrawal latencies from 52° and 56°C water, whereas morphine (1.0–30 mg/kg, IP) produced a dose-related increase in latencies at both water temperatures. A 10-μg dose of NPY also failed to alter the antinociceptive effects of morphine. This study does not support the idea that the discriminative stimulus and antinociceptive effects of morphine are dependent on an NPYergic pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.