Abstract

Hyperprolific sows often experience increased oxidative stress during late gestation and lactation periods, which can adversely affect the farrowing process and overall lactation performance. This study examines the influence of providing a coconut coir mat (CCM; 1 × 1 m) as nesting material, supplementing high-dose vit-C (HVC; 20% vit-C, 10 g/kg feed) as an antioxidant, or both on maternal behavior, the farrowing process, oxidative status, cortisol levels, and preovulatory follicle developments in sows with large litters. In total, 35 sows (Landrace × Yorkshire; litter size 15.43 ± 0.27) were allocated to the following four treatment groups: control (n = 9, basal diet), vit-C (n = 8, basal diet + HVC), mat (n = 10, basal diet + CCM), and mat + vit-C (n = 8, basal diet + HVC + CCM). A post-hoc analysis showed that compared with sows that were not provided CCM, mat and mat + vit-C groups demonstrated increased durations of nest-building behavior during the period from 24 h to 12 h before parturition (p < 0.05 for both), reduced farrowing durations, and decreased intervals from birth to first udder contact (p < 0.01 for both). The mat group exhibited lower advanced oxidation protein product (AOPP) levels during late gestation and lactation periods than the control group (p < 0.05). Sows with HVC supplementation showed longer farrowing durations than those without HVC supplementation (p < 0.0001). The vit-C group had higher salivary cortisol levels on day 1 after farrowing than the other treatment groups (p < 0.05). Furthermore, the follicle diameters on day 3 after weaning in the vit-C group tended to be smaller than those in the control group (p = 0.077). HVC supplementation prolonged farrowing and increased the physiological stress on postpartum, and no advantageous effects on maternal behavior and developmental progression of preovulatory follicles were observed. Hence, alternative solutions beyond nutritional approaches are required to address increased oxidative stress in hyperprolific sows and secure their welfare and reproductive performance. The present results substantiated the positive impact of providing CCM as nesting material for sows with large litters on nest-building behavior and the farrowing process, which could mitigate the deleterious consequences induced by peripartum physiological and oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call