Abstract

The cerebellum is organized into a series of parasagittally aligned bands which are well delineated in the adult mouse by the largely complementary immunostaining of Purkinje cell groups with the monoclonal antibodies Zebrin II (ZII; antigen: aldolase C) and P-path (antigen: 9- O-acetyl gangliosides). We examined the effect of nervous mutation on compartmental organization using these markers and an antibody to calbindin. In nervous mutant, up to 90% of Purkinje cells die in late postnatal development. The size of the cerebellum is about half that of normal, and caudal lobules appear to decrease in size more than anterior ones. Surviving Purkinje cells corresponded to P-path positive ones that were concentrated in two bilateral bands in the vermis and in medial portions of the hemispheres. Only small numbers of ZII positive cells remained, confirming the report by Wassef et al. with Zebrin I antibody. They were primarily located in caudal lobules IX, X and a portion of lobule IV, paraflocculus and flocculus, and their immunoreactivity was weak compared to that of normal. ZII positive cells are dominant in these caudal lobules, while P-path positive cells dominate in rostral lobules in normal mice, and the similar tendency remains in mutant. Thus, the nervous gene action respects not only sagittal compartments delineated by two antibodies, but also rostro-caudal gradient. The cause of the dominant survival of P-path positive cells awaits future study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call