Abstract

Vacuum-assisted closure (VAC) negative pressure wound therapy (NPWT) has been proven to be an effective therapeutic method for the treatment of recalcitrant wounds. However, its role in bone healing remains to be unclear. Here, we investigated the effects of NPWT on rat periosteum-derived mesenchymal stem cells (P-MSCs) proliferation and osteoblastic differentiation in a 3D fibrin matrix. P-MSCs underwent primary culture for three passages before being used to construct cell clots. The fibrin clots were incubated with NPWT under continuous suction at −125 mmHg in a subatmospheric perfusion bioreactor. Clots exposed to atmospheric pressure served as the static control. Compared to the control group, cell proliferation significantly increased in NPWT group after incubation for 3 days. There was no statistical difference in apoptosis rate between two groups. The ALP activity and mineralization of P-MSCs all increased under continuous suction. The expressions of collagen type 1 and transcription factor Cbfa-1 were higher at the 1-, 3-, and 7-day timepoints and the expressions of osteocalcin and integrin β5 were higher at the 3-, and 7-day timepoints in the NPWT group. These results indicate that a short time treatment with NPWT, applied with continuous suction at −125 mmHg, can enhance cellular proliferation of P-MSCs and induce the differentiation toward an osteogenic phenotype. The mechanotransduction molecule integrin β5 was found to be highly expressed after NPWT treatment, which indicates that NPWT may play a positive role in fracture healing through enhance bone formation and decrease bone resorption.

Highlights

  • Negative pressure wound therapy (NPWT) has been proven to be effective at treating complex wounds [1,2,3,4]

  • Cell proliferation The CCK-8 assay showed that the proliferation of periosteum-derived mesenchymal stem cells (P-Mesenchymal stem cells (MSCs)) in NPWT group was significantly upregulated compared to the control (Figure 2)

  • We performed TUNEL assay to observe if NPWT induced P-MSCs apoptosis

Read more

Summary

Introduction

Negative pressure wound therapy (NPWT) has been proven to be effective at treating complex wounds [1,2,3,4]. Mesenchymal stem cells (MSCs) from periosteum, endosteum and bone marrow play a pivotal role in bone healing They may contribute to healing through osteogenic and chondrogenic differentiation, endochondral ossification, and/or through the release of paracine factors resulting in recruitment and activation of host osteoprogenitor cells [13]. Swain et al [21] reported NPWT activates within mature dura a natural healing cascade that results in osseous tissue formation using a rabbit cranial critical-size defects model, they reasoned that negative pressure-induced mechanical signals (tissue stretching) may promote the process that progenitor cells from the dura differentiate to osteoblasts and synthesize bone matrix with subsequent mineralization. We hypothesize that the application of NPWT in traumatic wound with fracture or segmental bone loss may result in the transduction of strain to the underlying periosteum, with concomitant cell stretching, stimulating osseous healing in an analogous manner

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call