Abstract

We report a theoretical study of the plasmon-exciton coupling effect on the absorption spectra of pairs of closely spaced double-layer hybrid nanoparticles consisting of a metallic core and a J-aggregate dye shell. The effect of frequency conversion of plasmonic lines due to the near-field interaction between plasmons and Frenkel excitons of the organic shell is demonstrated. The effect leads to the appearance of additional spectral lines in the long-wavelength part of the spectrum of the system of hybrid particles. The shapes and the relative intensities of the additional lines exactly reproduce the specific features of the original spectrum of plasmonic absorption bands in uncoated metallic nanoparticles. The discovered phenomenon can be used to design new types of high-sensitivity nanosensors, based on plasmon-exciton effects and principles of near-field optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.