Abstract

Quantifying the impact of hyporheic exchange is crucial for understanding the transport and fate of microplastics in streams. In this study, we conducted several Computational Fluid Dynamics (CFD) simulations to investigate near-bed turbulence and analyze vertical hyporheic exchange. Different arranged spheres were used to represent rough and permeable sediment beds in natural rivers. The velocities associated with vertical hyporheic flux and the gravitational force were compared to quantify the susceptibility of microplastics to hyporheic exchange. Four scenario cases representing different channel characteristics were studied and their effects on microplastics movements through hyporheic exchange were quantitatively studied. Results show that hyporheic exchange flow can significantly influence the fate and transport of microplastics of small and light-weighted microplastics. Under certain conditions, hyporheic exchange flow can dominate the behavior of microplastics with sizes up to around 800 μm. This dominance is particularly evident near the sediment-water interface, especially at the top layer of sediments. Higher bed porosity enhances the exchange of microplastics between water and sediment, while increased flow conditions extend the vertical exchange zone into deeper layers of the bed. Changes in the bedform lead to the most pronounced vertical hyporheic exchange, emphasizing the control of morphological features on microplastics transport. Furthermore, it is found that sweep-ejection events are prevailing near the bed surface, serving as a mechanism for microplastics transport in rivers. As moving from the water column to deeper layers in the sediment bed, there's a shift from sweeps dominance to ejections dominance, indicating changes of direction in microplastics movement at different locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call