Abstract
Rare information is available in the literature on the cell performance of the solid oxide fuel cells (SOFCs) using apatites known for their good electrical conductivity as electrolyte materials. In this study, La9.5Ge5.5Nb0.5O26.5, La9.5Ge5.5Mo0.5O26.75, and La9.5Ge5.5W0.5O26.75 ceramics were prepared and characterized. The results indicated that the La9.5Ge5.5Nb0.5O26.5 and La9.5Ge5.5W0.5O26.75 ceramics reported hexagonal phase, while the La9.5Ge5.5Mo0.5O26.75 ceramic demonstrated triclinic symmetry. Among the apatities evaluated, La9.5Ge5.5Nb0.5O26.5 sintered at 1450 °C showed the best conduction with an electrical conductivity value of 0.045 S/cm at 800 °C. Button cells of NiO–SDC/La9.5Ge5.5Nb0.5O26.5/LSCF–SDC were built and revealed good structural integrity. The total ohmic resistance (R0) and interfacial polarization resistance (RP) of the cell read 0.428 and 0.174 Ω cm2 and 0.871 and 1.164 Ω cm2, respectively at 950 and 800 °C. The maximum power densities (MPD) of the single cell at 950 and 800 °C were respectively 0.363 and 0.095 W cm−2. Without optimizing the anode and cathode as well as hermetic sealing of the cell against the gas, the study found the performance of the single cell with the pure La9.5Ge5.5Nb0.5O26.5 as its electrolyte material superior to those of the SOFC cells with a YSZ electrolyte of comparable thickness shown in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.