Abstract

Strain-induced precipitation of complex carbonitrides and recrystallization for three high-Nb pipeline steels with different Nb and C content have been studied by using a stress relaxation technique and two-passes interrupted compression test. Sequentially, the PTT diagrams were obtained, and static recrystallization activation energy was calculated. Furthermore, the effects of Nb and C content on strain-induced NbC precipitation and static recrystallization were discussed. The results confirm the faster kinetics of precipitation and its retarded recrystallization in the case of higher Nb pipeline steel, and that the recrystallization is easier in low Nb pipeline steel in comparison to the case of high Nb steel. However, the effects of Nb on strain-induced precipitation and static recrystallization were associated with the Nb/C ratio. The precipitation start time (Ps) of strain-induced NbC is delayed in lower Nb/C ratio pipeline steel. It is suggested that the reduced supersaturation of Nb can result in the delay of precipitation of strain-induced NbC carbides forming in the low Nb/C ratio steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call