Abstract

The effects of native starch (NS), acetylated starch (AS), and acetylated distarch phosphate (ADSP) on the gel properties of soybean protein thermal gel were investigated using texture analysis, low-field nuclear magnetic resonance (LF-NMR) spectroscopy, dynamic rheometry and scanning electron microscopy. The results of the textural profile analysis showed that 10% ADSP increased the hardness and chewiness of the mixed gel, while NS and AS led to decreases in the textural properties. The results of the LF-NMR analysis indicated that the AS improved the water-holding capacity of the mixed gel due to the transformation of weakly bound water to strongly bound water. During heating and cooling, the rheological profiles of the elastic (G′) and viscous modulus (G″) of all the samples exhibited a two-stage pattern of decrease and then increase, and the final values of G′ and G″ reached maxima when the ADSP content was 10%. The scanning electron microscopy images showed that the ADSP granules dispersed in the gel network. The integrity of the starch granules was crucial for regulating the properties of the soybean protein gel. These results provided information about the further design and preparation of soybean protein foods containing modified starch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call