Abstract

The ability of predators to control the abundance of non-native species has been little explored in marine systems. Native predators may be used to control non-native species or may confer invasion resistance to communities if predation rates on invaders are density-dependent. We studied the response of southern California native predators to the density of Musculista senhousia (Benson in Cantor, 1842), a small, fast growing mussel that has been introduced from Japan to several coastlines worldwide. We performed field experiments to determine if M. senhousia proportional mortality is density-dependent and if eelgrass Zostera marina L. habitat structure influenced mussel density-dependent mortality. We also evaluated the effect of seagrass habitat structure on the aggregative and functional responses of the predatory gastropod Pteropurpura festiva (Hinds, 1844) to Asian mussel density. In the summer of 2002, P. festiva aggregated in plots with high mussel density and was responsible for nearly all predation on M. senhousia. However, M. senhousia proportional mortality was inversely density-dependent at all levels of eelgrass above-ground and below-ground habitat structure. Asian mussel proportional mortality also was inversely density-dependent and was not influenced by eelgrass habitat structure in the spring of 2004 when wading birds were the chief predator of mussels. In contrast to results for mussel proportional mortality, the aggregative and functional responses of P. festiva varied with seagrass habitat structure. P. festiva density increased with Asian mussel density in plots with low simulated habitat structure, but the relationship between P. festiva density and Asian mussel density was parabolic at zero, intermediate and high levels of habitat structure. In field enclosures, P. festiva exhibited a Type I (linear) functional response to Asian mussel density at low levels of eelgrass structure, and a Type II (hyperbolic) functional response to mussel density at high levels of eelgrass structure. Our results and those of others suggest that the degree to which local benthic communities in southern California are resistant to Asian mussel invasion depends on habitat structure, mussel settlement rates, and the density and diversity of predators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.