Abstract

ZnO thin film has been deposited on a sapphire (001) at a temperature of 400°C using a pulsed laser deposition (PLD) with oxygen pressures of 50, 200, 300 and 500 mTorr. As the oxygen pressure for the thin film deposition increases, the crystallinity of the samples degrades as measured by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). In contrast, the photoluminescence (PL) intensity of ultra-violet (UV) luminescence increases as the oxygen pressure increases up to 300 mTorr. This is probably because the stoichiometry of oxygen-deficient ZnO film is improved by increasing oxygen pressure. According to the results from Hall measurements, the oxygen vacancy as a native donor defect in the ZnO decreases in concentration as the pressure increases. It is concluded that the UV luminescence intensity strongly depends on the stoichiometry in the ZnO film rather than the micro-structural quality of the crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.