Abstract

Naodesheng (NDS) tablets have been widely used to treat ischemic stroke clinically. NDS relieves neurological function impairment and improve learning and memory in rats with focal cerebral ischemia, suggesting that NDS has potential for Alzheimer’s disease (AD) treatment. However, there are no studies about its effective material basis and possible mechanisms. In this study, a systems pharmacology method was applied to reveal the potential molecular mechanism of NDS in the treatment of AD. First, we obtained 360 NDS candidate constituents through ADMET filter analysis. Then, 115 AD‐related targets were uncovered by pharmacophore model prediction via mapping the predicted targets against AD-related proteins. In addition, compound-target and target-function networks were established to suggest potential synergistic effects among the candidate constituents. Furthermore, potential targets regulated by NDS were integrated into AD-related pathways to demonstrate the therapeutic mechanism of NDS in AD treatment. Subsequently, a validation experiment proved the therapeutic effect of NDS on cognitive dysfunction in rats with intracerebroventricular injection of Aβ. We found that administration of NDS tablets regulates β-amyloid metabolism, improves synaptic plasticity, inhibits neuroinflammation and improves learning and memory function. In conclusion, this is the first study to provide a comprehensive systems pharmacology approach to elucidate the potential therapeutic mechanism of NDS tablets for AD treatment. We suggest that the protective effects of NDS in neurodegenerative conditions could be partly attributed to its role in improving synaptic plasticity and inhibiting neuroinflammation via NF-κB signaling pathway inhibition and cAMP/PKA/CREB signaling pathway activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call