Abstract

Cellular response upon nsPEF exposure depends on different parameters, such as pulse number and duration, the intensity of the electric field, pulse repetition rate (PRR), pulsing buffer composition, absorbed energy, and local temperature increase. Therefore, a deep insight into the impact of such parameters on cellular response is paramount to adaptively optimize nsPEF treatment. Herein, we examined the effects of nsPEF ≤ 10 ns on long-term cellular viability and growth as a function of pulse duration (2-10 ns), PRR (20 and 200 Hz), cumulative time duration (1-5 µs), and absorbed electrical energy density (up to 81 mJ/mm3 in sucrose-containing low-conductivity buffer and up to 700 mJ/mm3 in high-conductivity HBSS buffer). Our results show that the effectiveness of nsPEFs in ablating 3D-grown cancer cells depends on the medium to which the cells are exposed and the PRR. When a medium with low-conductivity is used, the pulses do not result in cell ablation. Conversely, when the same pulse parameters are applied in a high-conductivity HBSS buffer and high PRRs are applied, the local temperature rises and yields either cell sensitization to nsPEFs or thermal damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.