Abstract
Due to the limited availability of fossil fuels and their harm to the environment, the importance of sustainable energy production has been revealed. In this context, inexhaustible energy can be obtained by using environmentally friendly renewable energy sources. It offers a good solution in energy production due to the lesser effects of solar energy on the environment. Thanks to the improvements and developments in nanotechnology, the thermal performance of solar collectors is improved by adding nanoparticles to the base fluid. In this study, heat transfer and fluid flow are investigated in a volumetric solar collector using different nanoparticles and base fluids. Discrete Ordinate Method is chosen as the radiation model to examine the absorption, scattering, and emitting effects of nanofluid. The results show that hybrid nanofluids increase the overall performance of the collector due to a higher level of radiation absorption capacity than pure water and mono nanofluids. Thus, hybrid nanofluids are a suitable heat transfer fluid for solar energy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.