Abstract

We have studied hybrid solar cells based on the polymer poly(3-hexylthiophene) (P3HT) and colloidal CdSe nanocrystals. Using CdSe nanospheres with varying size, we have found that the power conversion efficiency ( η P ) of these devices increases monotonically with the CdSe nanocrystal size, from η P =(0.39±0.04)% under AM1.5G solar illumination for 4.0±0.2 nm size nanospheres to η P =(1.9±0.2)% for 6.8±0.5 nm size nanospheres. The efficiency increase with nanocrystal size is mostly due to a significant increase in the short-circuit current, whereas the open-circuit voltage and fill factor of the solar cells are less affected. The devices also exhibit abnormal initial aging behavior when exposed to air, as an increase in both the short-circuit current and open-circuit voltage during the first 30 min leads to a significant increase in η P .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.