Abstract

It is believed that the aggregation of amyloid proteins or peptides is promoted by the presence of an air-water interface, and substantial evidence suggests that the characteristics of the air-water interface play critical roles in foam-induced protein aggregation during foam fractionation. However, the effects of the air-water interface on the self-assembly of amyloid-like peptides have not yet been elucidated clearly at the nanometer scale. In this work, air nanobubbles produced in water solution were employed for studying interfacial effects on the self-assembly of a model amyloid peptide termed P11. An atomic force microscopy study showed that the air nanobubbles induced the formation of peptide fibrils with a 9-13 nm helix structure in the P11 solution. Thioflavin T fluorescence and circular dichroism spectroscopic analysis indicated that the nanobubbles induced the change of the peptide conformation to a β-sheet structure. Based on these observations, we have proposed a mechanism to explain how the nanobubbles affect the self-assembly of the P11 peptide at the nanometer scale. Since air nanobubbles are present in water solutions in addition to an air-water interface in normal experiments in vitro, our results indicate that nanobubbles must be taken into account to achieve a complete understanding of protein aggregation events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.