Abstract

In the present paper, transformation behavior during continuous cooling in non-deformed and hot deformed Nb–Ti micro-alloyed steels was investigated by using the thermal dilation method. Ti content in Nb–Ti bearing steels varied from 0 to 0.031 mass% with Nb content being kept to be constant. Thermal dilation curves were measured at different cooling rates, from which continuous cooling transformation (CCT) curves were built up. For non-deformed Nb–Ti steels, it was observed that ferrite transformation start temperatures (Ar3) decreased with increasing Ti content up to 0.015 mass%, leveled off in the range of 0.015 to 0.027 mass% Ti, and drastically decreased thereafter. For hot deformed Nb–Ti steels, Ar3 temperature did not exhibit significant difference with Ti addition lower than 0.027 mass%, and decreased drastically by further increasing Ti content. Austenite grain size (Dγ), Nb–Ti precipitates and residual strain were taken into account to explain the variation of Ar3 temperatures. Based on the experimental results, mathematical models for the calculation of Ar3 for non-deformed and hot deformed Nb–Ti micro-alloyed steels were developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call