Abstract

ObjectivesThe aim was to evaluate the impact of nano-micelles curcumin (NMCur) based photodynamic therapy (PDT) during compressive force application on human PDL-derived fibroblasts (HPDFs) in vitro for up to 6 days on the expression of RUNX2 as an indicator of bone development and remodeling. Materials and methodsHPDFs viability during 2 g/cm2 compressive force application was investigated using membrane-impermeable DNA-binding stain propidium iodide (PI) in flow cytometry. Gene and protein expressions of RUNX2 were assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and flow cytometry, respectively, following NMCur-PDT at different concentrations of NMCur (25, 50, and 75 µM plus irradiation of 180 mW/cm2 diode laser at the wavelength of 450 ± 10 nm for 5 min) during the static compressive force of 2 g/cm2 on HPDFs via weight approach-based in-vitro loading model up to 6 days. One-way ANOVA and Tukey post hoc tests at a p-value equal to/or less than 0.05 were used to analyze the obtained data. ResultsAfter 6 days of application of compressive force, 99.21 ± 6.12% of HPDFs were PI negative and therefore considered alive, while only 0.89 ± 0.06% of the population were PI positive and considered dead. In comparison with controls (loaded HPDFs), expression of RUNX2 gene was dose-dependent and the highest expression (14.38-fold; P < 0.01) was observed at a concentration of 75 µM NMCur following 5 min of diode laser irradiation (i.e., 75 µM NMCur-PDT) during compressive force application on day 5. The greatest and lowest upregulations of RUNX2 protein were observed in 75 µM NMCur-PDT during compressive force application on HPDFs, on day 5 (3.19-fold; P < 0.01) and day 6 (2.09-fold; P < 0.05), respectively. ConclusionNMCur-PDT during weight approach-based in-vitro loading model can promote orthodontic tooth movement by upregulating RUNX2 signaling pathway in HPDFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.