Abstract

Opioid antagonists at ultra-low doses have been used with opioid agonists to prevent or limit opioid tolerance. The aim of this study was to evaluate whether an ultra-low dose of naloxone combined with remifentanil could block opioid-induced hyperalgesia and tolerance under sevoflurane anesthesia in rats. Male adult Wistar rats were allocated into one of four treatment groups (n = 7), receiving remifentanil (4 µg·kg·min) combined with naloxone (0.17 ng·kg·min), remifentanil alone, naloxone alone, or saline. Animals were evaluated for mechanical nociceptive thresholds (von Frey) and subsequently anesthetized with sevoflurane to determine the baseline minimum alveolar concentration (MAC). Next, treatments were administered, and the MAC was redetermined twice during the infusion. The experiment was performed three times on nonconsecutive days (0, 2, and 4). Hyperalgesia was considered to be a decrease in mechanical thresholds, whereas opioid tolerance was considered to be a decrease in sevoflurane MAC reduction by remifentanil. Remifentanil produced a significant decrease in mechanical thresholds compared with baseline values at days 2 and 4 (mean ± SD, 30.7 ± 5.5, 22.1 ± 6.4, and 20.7 ± 3.7g at days 0, 2, and 4, respectively) and an increase in MAC baseline values (2.5 ± 0.3, 3.0 ± 0.3, and 3.1 ± 0.3 vol% at days 0, 2, and 4, respectively). Both effects were blocked by naloxone coadministration. However, both remifentanil-treated groups (with or without naloxone) developed opioid tolerance determined by their decrease in MAC reduction. An ultra-low dose of naloxone blocked remifentanil-induced hyperalgesia but did not change opioid tolerance under inhalant anesthesia. Moreover, the MAC increase associated with hyperalgesia was also blocked by naloxone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.