Abstract

The adverse effects of salt should not be the same in tobacco plants exposed to a permanent and transient high concentration of NaCl in its environment. Experiments were conducted in order to verify the hypothesis of reversibility of NaCl effects. The study of this reversibility is checked by monitoring a number of parameters in pre-stressed plants and then, replaced in normal conditions. Plants previously grown for 30 days on basic medium were treated for 7 days with 200 mM NaCl and then placed back on the basic culture without NaCl for 10 days. The results show that NaCl suppression leads to a resumption of growth with a decrease in the concentration of sodium (Na + ) and chloride ions (Cl - ). Hence, potassium content (K + ) increases gradually in the leaves to reach the level obtained with unstressed plants. At the same time, there is a stimulation of the activities of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase isoenzymes (NAD, NADP, NADH and NADPH-MDH) and isocitrate dehydrogenase (ICDH) after NaCl had been removed. Along with the boosting of the activity of these enzymes involved in the process of carbon assimilation, there is a gradual decrease in soluble sugars content, suggesting a resumption of the normal activity of photosynthetic assimilation process. All these results verify our hypothesis and can be explained by the ability of the plant to dilute the effects of Na + and Cl - during the recovering period. An important result of this study is that a transient salinity is not necessarily followed by a significant depreciation in product yield or quality. Keywords: Tobacco, NaCl, reversibility, phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.