Abstract

Background: Neonatal asphyxia may lead to the development of ischemia-reperfusion induced intestinal injury, which is related to oxygen-derived free radical production. N-Acetylcysteine (NAC) is a thiol-containing antioxidant which increases intracellular stores of glutathione. Objectives: Using a swine model of neonatal hypoxia-reoxygenation, we examined whether administration of NAC after resuscitation improved intestinal perfusion and reduced intestinal damage. Methods: Twenty-four piglets (1–4 days old, 1.4–2.2 kg) were anesthetized and acutely instrumented for continuous monitoring of superior mesenteric arterial flow and oxygen delivery. Alveolar hypoxia was induced for 2 h, followed by resuscitation with 100% oxygen for 1 h and 21% oxygen for 3 h. Animals were randomized to sham-operated, hypoxic control and NAC treatment (150 mg/kg i.v. at 0 or 10 min of reoxygenation followed by infusion 100 mg/kg/h) groups. During hypoxia-reoxygenation, intestinal tissue glutathione content, caspase-3 activity and reoxygenation injury were examined. Results: After 2 h of hypoxia, piglets were acidotic and hypotensive, with significantly depressed blood flow and oxygen delivery to the small intestine. Upon reoxygenation, hemodynamics recovered as did oxygen supply to the small intestine. After 4 h of reoxygenation, the NAC treatment improved mesenteric flow and oxygen delivery. Despite reducing the increase in caspase-3 activities after hypoxia-reoxygenation by NAC treatment, no significant differences in the glutathione content and histological grading of ileal injury were found among the experimental groups. Conclusions: In newborn piglets with hypoxia-reoxygenation, NAC may improve mesenteric blood flow and oxygen delivery without significant effect on tissue glutathione content. The protective role of NAC in the reoxygenated intestine after severe hypoxia warrants further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.