Abstract

ABSTRACTThe effects of N2O gas addition on the properties of zinc oxide films grown on a-plane (11-20) sapphire (a-Al2O3) substrates were investigated, using a chemical vapor deposition method based on the reaction between dimethylzinc and high-energy H2O produced by a Pt-catalyzed H2-O2 reaction. By employing an optimal N2O gas pressure, both the film crystallinity and crystal orientation were improved. Subsequent to treatment with N2O, the electron mobility of films at room temperature increased from 207 to 234 cm2/Vs while the electron concentration decreased at low temperatures. In addition, the photoluminescence peak intensity of the nearband-edge emission was increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.