Abstract

This paper describes the synthesis, solution-phase biophysical studies, and X-ray crystallographic structures of hexamers formed by macrocyclic β-hairpin peptides derived from the central and C-terminal regions of Aβ, which bear "tails" derived from the N-terminus of Aβ. Soluble oligomers of the β-amyloid peptide, Aβ, are thought to be the synaptotoxic species responsible for neurodegeneration in Alzheimer's disease. Over the last 20 years, evidence has accumulated that implicates the N-terminus of Aβ as a region that may initiate the formation of damaging oligomeric species. We previously studied, in our laboratory, macrocyclic β-hairpin peptides derived from Aβ16-22 and Aβ30-36, capable of forming hexamers that can be observed by X-ray crystallography and SDS-PAGE. To better mimic oligomers of full length Aβ, we use an orthogonal protecting group strategy during the synthesis to append residues from Aβ1-14 to the parent macrocyclic β-hairpin peptide 1, which comprises Aβ16-22 and Aβ30-36. The N-terminally extended peptides N+1, N+2, N+4, N+6, N+8, N+10, N+12, and N+14 assemble to form dimers, trimers, and hexamers in solution-phase studies. X-ray crystallography reveals that peptide N+1 assembles to form a hexamer that is composed of dimers and trimers. These observations are consistent with a model in which the assembly of Aβ oligomers is driven by hydrogen bonding and hydrophobic packing of the residues from the central and C-terminal regions, with the N-terminus of Aβ accommodated by the oligomers as an unstructured tail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call