Abstract

The present experiment work implements the reactivity controlled compression ignition (RCCI) technique in analysing the combustion, performance, and emissions (regulated and unregulated) characteristics of diesel engine. A high reactivity calophyllum inophyllum biodiesel blend (B20) is directly injected inside the cylinder and a low reactivity n-butanol fuel is injected in three different ratios (10%, 20% and 30% by vol. basis) into the inlet manifold section using the electronic control unit. This study reveals that the brake thermal efficiency increased by 4.32%, oxides of nitrogen, smoke, acetaldehyde, benzaldehyde, hexanaldehyde, are reduced 19.31%, 8.82%, 12.19%, 11.71% and 37.02%, respectively compared to diesel at full load condition. The carbon monoxide, hydrocarbons, formaldehyde, crotanaldehyde are increased by 15.23%, 20.87%, 15%, and 13.23% compared with neat diesel fuel. The cylinder pressure and heat release rate are increased by 18%, 29.15% with n-butanol 30% injection due to the advanced start of combustion, high cylinder temperature, and better mixture formation. [Received: September 19, 2019; Accepted: June 26, 2020]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.