Abstract

Effects of the single addition of nitrogen (N) and boron (B) and the combined addition of N and B on continuous cooling transformation (CCT) diagrams and properties of the three Mo–V–Ti micro-alloyed steels were investigated by means of a combined method of dilatometry and metallography. Microstructures observed in continuous cooled specimens were composed of pearlite (P), quasi-polygonal ferrite (QPF), granular bainite (GB), acicular ferrite (AF), lath-like bainite (LB) and martensite (M) depending on the cooling rates and transformation temperatures. Single addition of 12 ppm B effectively reduced the formation of QPF and broadened the cooling rate region for LB and M. Added N makes the action of B invalid and the QPF region was prominently broadened, and even though the cooling rate is higher than 50°C s−1, it cannot obtain full bainite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call