Abstract

For the purpose of a side-effect monitoring of isoniazid (INH), we investigated the relationship between the genotypes of drug-metabolizing enzymes involved in INH metabolism and the serum concentrations of INH and its metabolites in 129 tuberculosis patients hospitalizing in the National Hospital Organization Chiba-East Hospital. Genotype distributions of N-acetyltransferase 2 (NAT2), CYP2E1*5B, CYP2E1*6, Glutathione-S-transferase (GST) M1 and GST T1 were similar to those already reported in Japanese populations. Acetylating pathway of INH to acetyl isoniazid (AcINH) tended to shift to the hydrolytic pathway generating hydrazine (Hz) with the increase of mutant alleles in NAT2 gene. Serum concentration of Hz was significantly higher in slow acetylators than in rapid acetylators of NAT2. And also, serum concentration of Hz was significantly higher in the group that showed a high concentration of rifampicin (RFP) than in which RFP was not detected. The effect of CYP2E1 gene polymorphisms on the serum concentration of Hz was rarely observed, while that of GST gene polymorphism was observed in intermediate acetylators of NAT2. Hz tended to accumulate in patients with GST M1 null genotype. Therefore, it is conceivable that the risk factors of Hz accumulation are as follows: NAT2 slow acetylator phenotype, high concentration of serum RFP, and GST M1 null genotype. In these cases, we think it's necessary to pay attention to the development of hepatic disorder caused by Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.