Abstract

The effects of N-acetyl-L-cysteine (NAC) on cytotoxicity caused by a hydroxylated fullerene [C60(OH)24], which is known a nanomaterial and/or a water-soluble fullerene derivative, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to C60(OH)24 at a concentration of 0.1mM caused time (0-3h)-dependent cell death accompanied by the formation of cell blebs, loss of cellular ATP, and reduced glutathione (GSH) and protein thiol levels, as well as the accumulation of glutathione disulfide and malondialdehyde (MDA), indicating lipid peroxidation. Despite this, C60(OH)24-induced cytotoxicity was effectively prevented by NAC pretreatment ranging in concentrations from 1 to 5mM. Further, the loss of mitochondrial membrane potential (MMP) and generation of oxygen radical species in hepatocytes incubated with C60(OH)24 were inhibited by pretreatment with NAC, which caused increases in cellular and/or mitochondrial levels of GSH, accompanied by increased levels of cysteine via enzymatic deacetylation of NAC. On the other hand, severe depletion of cellular GSH levels caused by diethyl maleate at a concentration of 1.25mM led to the enhancement of C60(OH)24-induced cell death accompanied by a rapid loss of ATP. Taken collectively, these results indicate that pretreatment with NAC ameliorates (a) mitochondrial dysfunction linked to the depletion of ATP, MMP, and mitochondrial GSH level and (b) induction of oxidative stress assessed by reactive oxygen species generation, losses of intracellular GSH and protein thiol levels, and MDA formation caused by C60(OH)24, suggesting that the onset of toxic effects is at least partially attributable to a thiol redox-state imbalance as well as mitochondrial dysfunction related to oxidative phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call