Abstract

Objective: To investigate the impact of n-3 polyunsaturated fatty acid (n-3 PUFA) on function and expression of store-operated calcium channels (SOCC) in coronary artery smooth muscle cells (SMC) derived from diabetic rat. Methods: A total of 180 healthy male Sprague-Dawley (SD) rats were randomly divided into normal group (N, n=45), placebo-treated diabetic group (D, n=45), lose dose n-3 PUFA treated diabetic group (DL, n=45) and high dose n-3 PUFAs treated diabetic group (DH, n=45). Streptozotocin-induced diabetic rat animal model was established by two consecutive intraperitoneal injections. After modeling, rats in group DL and DH were treated with 10 mg·kg(-1)·d(-1) and 50 mg·kg(-1)·d(-1) n-3 PUFAs respectively per gavage for eight weeks. After eight weeks, rat coronary artery SMC was isolated by enzyme digestion. Changes of cytosolic calcium concentration in coronary artery SMC were examined by calcium fluorescence imaging technique, coronary artery tension was detected by myograph system, and protein expressions of SOCC on coronary artery SMC were measured by Western blot. Results: SOCC induced ΔF340/F380 of group N, D, DL and DH were 0.425±0.023, 0.838±0.037, 0.342±0.052 and 0.364±0.045 respectively, which was significantly lower in group N, DL, DH than in group D (P<0.05). SOCC induced changes of tensions were 0.94±0.09, 1.95±0.18, 1.35±0.24 and 1.01±0.18 in the group N, D, DL and DH, respectively, which was significantly lower in group N and DH than in group D (P<0.05). Protein expressions of STIM1, Orai1 and TRPC1 were significantly higher in diabetic rat coronary SMC than in group N (P<0.05). STIM1 protein expressions were significantly lower in group DL and DH than in group D, and Orai1 and TRPC1 protein expressions were similar among group. Conclusions: Coronary artery tension, cytosolic calcium concentration and protein expressions of SOCC are higher in diabetic rat coronary artery SMC when compared with normal rats. n-3 PUFA intervention could downregulate the protein expression of SOCC, reduce cytosolic calcium concentration and coronary artery tension, and is protective to the diabetic injury in coronary artery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.