Abstract
In the one-clip, two-kidney model of hypertensive rat, a gradual chronic pressure overload is imposed on the heart. Myocardial hypertrophy resulting from such pressure overload is associated with an increased but slower inactivating L-type calcium current and prolongation of action potential duration. Voltage clamp experiments in a variety of excitable tissues indicate that a 4-aminopyridine-sensitive transient outward current (Ito) plays an important role in regulating the action potential duration. Accordingly, we studied Ito in single adult cardiac myocytes enzymatically isolated from hypertrophied left ventricles of the renovascular hypertensive (HBP) rat hearts using the whole cell patch-clamp method. The current densities (normalized to cell capacitative surface area) measured at the early transient peak Ito, at the steady state, and as the difference between the transient peak and the steady state were larger in HBP cells (n = 23) than in control (Ctrl) cells (n = 20) (P < 0.05). There was no difference in the Ito reversal potential between Ctrl (-60.9 +/- 1.9 mV, mean +/- SE; n = 16) and HBP (-63.7 +/- 2.6 mV; n = 19) cells. The observed increase in Ito amplitude was not due to an increase in the number of channels available for activation or in the fraction of channels activated because there were no statistical differences in the membrane potential at which one-half of the Ito channels are activated (V0.5) for the steady-state activation and inactivation curves between Ctrl and HBP cells. The time course of inactivation of Ito was described by a double-exponential function.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.