Abstract

Mycorrhizal symbioses, which include plant roots and arbuscular mycorrhizal fungi (AMF), can significantly enhance plant resistance and promote the absorption of soil nutrients by plants. A greenhouse experiment was conducted to investigate the effects of three AMF species (Glomus mosses, Glomus etunicatum and Glomus versiforme) on the height, biomass, malondialdehyde (MDA) and proline contents and antioxidant enzyme activities of perennial ryegrass (Lolium perenne) under different water supply treatments. Potted experimental soil samples were collected from the abandoned rare earth tailings in Ganzhou, Jiangxi. The results showed that all three AMF species infected ryegrass under the different treatments. Under severe drought stress, G. mosses had the most significant effects on the promotion of ryegrass performance. After inoculation, the height and whole-plant biomass of ryegrass increased by 60.44% and 150%, respectively. In addition, inoculation with AMF significantly reduced the content of MDA and proline in the ryegrass leaves in all water supply treatments except the moderate drought stress treatment, in which there was no effect. The leaf antioxidant enzyme activity was also measured. The results showed that under severe drought stress, inoculation with Glomus mosses significantly increased the activities of CAT and SOD in ryegrass and enhanced the resistance of plants. A possible reason that AMF promotes host plant growth and enhances drought resistance is that AMF directly increases the absorption of soil water and minerals by host plant roots and indirectly improves the physiological metabolism of plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.