Abstract

A complex of γ, ε, and c subunits rotates in ATP synthase (F oF 1) coupling with proton transport. Replacement of βSer174 by Phe in β-sheet4 of the β subunit (βS174F) caused slow γ subunit revolution of the F 1 sector, consistent with the decreased ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698–20704]. Modeling of the domain including β-sheet4 and α-helixB predicted that the mutant βPhe174 residue undergoes strong and weak hydrophobic interactions with βIle163 and βIle166, respectively. Supporting this prediction, the replacement of βIle163 in α-helixB by Ala partially suppressed the βS174F mutation: in the double mutant, the revolution speed and ATPase activity recovered to about half of the levels in the wild-type. Replacement of βIle166 by Ala lowered the revolution speed and ATPase activity to the same levels as in βS174F. Consistent with the weak hydrophobic interaction, βIle166 to Ala mutation did not suppress βS174F. Importance of the hinge domain [phosphate-binding loop (P-loop)/α-helixB/loop/β-sheet4, βPhe148–βGly186] as to driving rotational catalysis is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call