Abstract

ABSTRACTMicrotubules are essential for neuronal structure and function. Axonal and dendritic microtubules are enriched in post-translational modifications that impact microtubule dynamics, transport and microtubule-associated proteins. Acetylation of α-tubulin lysine 40 (K40) is a prominent and conserved modification of neuronal microtubules. However, the cellular role of microtubule acetylation remains controversial. To resolve how microtubule acetylation might affect neuronal morphogenesis, we mutated endogenous α-tubulin in vivo using a new Drosophila strain that facilitates the rapid knock-in of designer αTub84B alleles (the predominant α-tubulin-encoding gene in flies). Leveraging our new strain, we found that microtubule acetylation, as well as polyglutamylation and (de)tyrosination, is not essential for survival. However, we found that dendrite branch refinement in sensory neurons relies on α-tubulin K40. Mutagenesis of K40 reveals moderate yet significant changes in dendritic lysosome transport, microtubule polymerization and Futsch protein distribution in dendrites but not in axons. Our studies point to an unappreciated role for α-tubulin K40 and acetylation in dendrite morphogenesis. While our results are consistent with the idea that acetylation tunes microtubule function within neurons, they also suggest there may be an acetylation-independent requirement for α-tubulin K40.This article has an associated First Person interview with the first author of the paper.

Highlights

  • Microtubules provide the basis for neuronal architecture

  • We found that the K40R mutation does not phenocopy the effects of the K40A mutation on dendrite dynamics, suggesting that K40 may be essential for α-tubulin and/or microtubule structure

  • In mature larval da neurons, microtubule acetylation levels are equivalent between axons and dendrites (Fig. 1E,F)

Read more

Summary

Introduction

The ability of neurons to transmit and receive signals depends on the proper morphogenesis of axons and dendrites. Axons and dendrites differ in structure as well as function. Microtubules in each compartment are uniquely organized and enriched in post-translational modifications (PTMs), including acetylation, detyrosination and polyglutamylation The role that microtubule PTMs, in particular acetylation, may play in neuronal morphogenesis has been controversial

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.