Abstract

Type I diabetes mellitus represents a metabolic disorder in which intracellular glycolytic pathway is inhibited by insulin deficiency, with the subsequent decreased availability of energetic substrates such as ATP. Some aspects of the energetic metabolism in response to an intensive demand (muscular exercise) were investigated, in a group of 10 ketotic diabetic patients, by measuring erythrocyte adenosine triphosphate (ATP) and blood glucose, free fatty acids (FFA) and lactate levels. In the diabetic subjects, in comparison with normal subjects, the decreased levels of erythrocyte ATP at rest did not increase after exercise, while the increased levels of FFA at rest did not diminish after exercise. The results show that the impaired erythrocyte glycolysis may produce reduced levels of ATP not only at rest, but also after exercise, when muscular contraction results in a manifold increase in cellular energy requirements. In addition, other metabolic systems providing energy for the exercising muscle, such as FFA utilization, are impaired in the ketotic diabetic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.