Abstract

The effects of muscarinic agonists and depolarizing agents on inositol phospholipid hydrolysis in the rabbit vagus nerve were assessed by the measurement of [3H]inositol monophosphate production in nerves that had been preincubated with [3H]inositol. After 1 h of drug action, carbachol, oxotremorine, and arecoline increased the inositol monophosphate accumulation, though the maximal increase induced by these agonists differed. Addition of the muscarinic antagonists atropine or pirenzepine shifted the carbachol dose-response curves to the right, without decreasing the carbachol maximal stimulatory effects. The KB for pirenzepine was 35 nM, which is characteristic of muscarinic high-affinity binding sites coupled to phosphoinositide turnover and often associated with the M1 receptor subtype. On the other hand, agents known to depolarize or to increase the intracellular Ca2+ concentration, e.g., elevated extracellular K+, ouabain, Ca2+, and the Ca2+ ionophore A23187, also increased inositol monophosphate accumulation. These effects were not mediated by the release of acetylcholine, as suggested by the fact that they could not be potentiated by the addition of physostigmine nor inhibited by the addition of atropine. The Ca(2+)-channel antagonist Cd2+, also known to inhibit the Na+/Ca2+ exchanger, was able to block the effects of K+ and ouabain, but did not alter those of carbachol. These results suggest that depolarizing agents increase inositol monophosphate accumulation in part through elevation of the intracellular Ca2+ concentration and that muscarinic receptors coupled to phosphoinositide turnover are present along the trunk of the rabbit vagus nerve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.