Abstract

Natural and anthropogenic pressures exert influence on ecosystem structure and function by affecting the physiology and behavior of organisms, as well as the trophic interactions within assemblages. Therefore, understanding how multiple stressors affect aquatic ecosystems can improve our ability to manage and protect these ecosystems and contribute to understanding fundamental ecological principles. Here, we conducted a mesocosm experiment to ascertain the individual and combined effects of multiple stressors on trophic interactions within species in freshwater ecosystems. Furthermore, we investigated how species respond to such changes by adapting their food resources. To mimic a realistic food web, we selected fish and shrimp as top predators, gastropods, zooplankton and zoobenthos as intermediate consumers, with producers (macrophytes, periphyton and phytoplankton) and detritus as basal resources. Twelve different treatments included a control, nutrient loading only, herbicide exposure only, and a combination of nutrient loading and herbicide exposure, each replicated under ambient temperature, constant warming and multiple heat waves to simulate environmental stressors. Our results demonstrated that antagonistic interactions between environmental stressors were widespread in trophic interactions, with a more pronounced and less intense impact observed for the high trophic level species. The responses of freshwater communities to environmental stressors are complex, involving direct effects on individual species as well as indirect effects through species interactions. Moreover, our results confirmed that the combinations of stressors, but not individual stressors, led to a shift to herbivory in top predators, indicating that multiple stressors can be more detrimental to organisms than individual stressors alone. These findings elucidate how changes in the resource utilization of species induced by environmental stressors can potentially influence species interactions and the structural dynamics of food webs in freshwater ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call