Abstract

We consider effects of motion in cavity quantum electrodynamics experiments where single cold atoms can now be observed inside the cavity for many Rabi cycles. We discuss the timescales involved in the problem and the need for good control of the atomic motion, particularly the heating due to exchange of excitation between the atom and the cavity, in order to realize nearly unitary dynamics of the internal atomic states and the cavity mode which is required for several schemes of current interest such as quantum computing. Using a simple model we establish ultimate effects of the external atomic degrees of freedom on the action of quantum gates. The perfomance of the gate is characterized by a measure based on the entanglement fidelity and the motional excitation caused by the action of the gate is calculated. We find that schemes which rely on adiabatic passage, and are not therefore critically dependent on laser pulse areas, are very much more robust against interaction with the external degrees of freedom of atoms in the quantum gate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call