Abstract

AbstractWe report the synthesis of NiFe2O4nanoparticles by the complexation EDTA‐citrate method under acidic (pH = 3) and basic (pH = 9) conditions. The structural, optical, vibrational, magnetic, and electrochemical properties were studied. The samples have crystallite sizes of 21 nm (pH 3) and 73 nm (pH 9), with rounded particles and layered structures. The57Fe Mössbauer spectra at 12 K showed that both samples had an inverse spinel cation distribution. At 5 K, the sample prepared at pH 9 showed saturation magnetizations of about 50 emu/g. Raman spectra showed typical bands of NiFe2O4phase. The materials were tested as electrodes under alkaline condition. The cyclic voltammetry and charge‐discharge experiments indicated a battery‐type behavior, with maximun capacities of 65 and 5 C/g (at specific currents of 3 and 10 A/g) for samples prepared at pH 9 and 3, respectively. This work offers a route for obtaining NiFe2O4nanoparticles with different morphologies and sizes tuned by the synthesis conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.