Abstract

The effect of UV-visible light and natural sunlight on the Fe(III)-catalyzed oxidation of dissolved sulfur dioxide has been studied under the conditions representative for those of acidified atmospheric liquids. The experimental results have shown that both sunlight and UV-visible light enhance the rate of Fe(III)-catalyzed oxidation of aqueous sulfite with wavelength ranging from 300 to 575 nm. The light enhanced oxidation is mainly due to photochemical formation of OH radicals from Fe(OH)2+ complexes in the wavelength region below 420 nm and SO3•− free radicals from Fe(III) sulfite complexes above 420 nm in the absence of organic ligands. Like the Fe(III)-catalyzed thermal chemical oxidation, the Fe(III)-catalyzed photochemical oxidation is also first order with respect to sulfite ion concentration. The sunlight irradiation can increase the Fe(III)-catalyzed oxidation of S(IV) over 45%. The presence of organic complex ligands, such as oxalate, can completely inhibit the Fe-catalyzed oxidation of S(IV) in the dark. However, the photolysis of Fe(III)-oxalato complexes generates oxalate free radicals, leading to the formation of H2O2 and OH radicals and the oxidation of S(IV). The rate of Fe(III)-catalyzed oxidation of S(IV) species is found to increase with increasing light intensity. The effects of sunlight on the Fe(III)-catalyzed oxidation of S(IV) should be taken into account when predicting the daytime rates of sulfuric acid formation in atmospheric water droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call