Abstract

In Exp. 1, Brachiaria ruziziensis (11.1 % CP) was inoculated or not with two sources of monensin, resulting in three treatments: 1) no monensin inoculation (CONT), 2) 20 mg of monensin sodium-A/kg of DM (Elanco Animal Health; MON-A), and 3) 20 mg of monensin sodium-B/kg of DM (Shandong Qilu King-Phar Pharmaceutical Co. Ltd.; MON-B). Three rumen-fistulated Jersey steers were offered a cool-season forage-based diet and were used as the rumen inoculum donors. Volatile fatty acids concentrations were evaluated at 0, 6, 12, 24, 30, and 48 h after treatment inoculation. Overall, acetate and butyrate concentrations were reduced in MON-A vs. CONT (P ≤ 0.02), whereas both monensin products reduced Ac:Pr ratio vs. CONT (P ≤ 0.01); however, MON-A also (P = 0.05) reduced the Ac:Pr ratio vs. MON-B. A treatment × hour interaction was detected for rumen propionate concentration (P = 0.01), primarily because MON-A resulted in greater propionate than CONT and MON-B at 24 and 48 h (P ≤ 0.03), but no differences were observed between CONT vs. MON-B (P ≥ 0.27). In Exp. 2, 240 Nellore bulls (initial BW = 363.2 ± 40.9 kg) were ranked and blocked according to initial BW, and within blocks animals were allotted into pens (n = 10 pens/treatment). Pens were randomly assigned into one of three treatments: 1) corn-based diet with no monensin (CONT), 2) CONT plus 28 mg of MON-A/kg of DM, and 3) CONT plus 28 mg of MON-B/kg of DM. The CONT diet was composed of sugarcane bagasse, ground corn, DDGS, urea, and a mineral-vitamin mix. The experimental period lasted 106 d and was divided into a 21-d adaptation period and an 85-d finishing phase. During the adaptation phase, both monensin sources increased (P ≤ 0.01) BW change, ADG, and F:G, as well as reduced DMI variation (P = 0.02). When the entire experimental period was evaluated, no treatment effects were detected for final BW, DMI, and ADG (P ≥ 0.26). Nonetheless, DMI variation was reduced as monensin was included (P = 0.01) and only MON-A improved the efficiency by reducing F:G vs. CONT (P = 0.05) and biological efficiency vs. MON-B (P = 0.05). Additionally, carcass ADG tended (P = 0.10) to be greater for MON-A vs. MON-B, whereas no other differences in the carcass characteristics were observed (P ≥ 0.53). In summary, the source of monensin inoculated in vitro and offered to Nellore bulls during the feedlot phase significantly affected the energetic efficiency and the performance of the animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.