Abstract
Effects of the proton-alkali cation-exchanging ionophore, monensin, on aspects of cellular metabolism and ionic exchanges have been studied in rat tissues in vitro. Incubation of liver slices at 38 degrees C with 0.1 microM monensin induced time-dependent vesiculation, initially in the Golgi region, reduction of ATP content and of protein synthesis. At 1 microM, monensin also reduced net, active movements of K+, Na+, Cl- and water in liver slices and inhibited state 3 respiration in isolated mitochondria. The respiratory inhibitor, amytal, similarly reduced ATP content and protein synthesis at concentrations lower than those inhibiting ion transport in slices. Low concentrations of monensin (0.1-1.0 microM) had similar effects on ATP and ion transport in slices of adult lung. By contrast, late-fetal liver and lung were much less sensitive to monensin; in these tissues, glycolysis sustained substantial levels of ATP. Monensin also induced vesiculation of the Golgi apparatus in fetal lung cells. It is concluded that by lowering ATP levels, monensin can markedly alter various metabolic activities in those cells which depend primarily on oxidative phosphorylation for their metabolic energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.