Abstract
The platelets play a crucial role in the progression of multiple medical conditions, such as stroke and tumor metastasis, where antiplatelet therapy may be a boon for treating these diseases. In this study, we have attempted to study the effects of extracted Momordica charantia exosomes (MCEs) on platelet activation, adhesion, and aggregation. Adult platelets isolated from healthy individuals were dose-dependently treated with MCEs (0.1, 40, and 200 μg/ml). We performed flow cytometry to detect the expression of platelet activation protein marker-activated GP IIb/IIIa (PAC-1) and P-selectin (CD62P). Platelet adhesion was analyzed through fluorescence labeling assays. The effect of MCEs on platelet-mediated cell migration of HCT116 cells was observed by transwell. Furthermore, the MCAO model of Sprague-Dawley rats was used to observe the effect of MCEs (200, 400, and 800 μg/kg) on platelet aggregation and maximum thrombotic agglutination in vivo . The results showed that 200 μg/ml MCEs exerted the most pronounced effect on platelet activation, adhesion, and aggregation. Experiments on animals showed that MCEs significantly inhibited platelet aggregation and attenuated the maximum thrombus agglutination. We concluded that MCEs inhibited platelet activation, adhesion, aggregation, and platelet-mediated migration of HCT116 cells, indicating the potential role MCEs may play in the treatment of stroke and tumor metastasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.