Abstract

AbstractRecently, CO2 methanation has become a technique that aims to reduce anthropogenic CO2 emissions by converting CO2 captured from stationary and mobile sources and H2 produced from renewable sources into CH4. Due to their excellent performance‐to‐cost ratio, Ni‐based catalysts were frequently used in such conversions. The main drawbacks, however, are that Ni has the propensity to aggregate and deposit carbon during the high‐temperature reaction. These issues can be partially resolved by including a support (e.g., MOF, zeolite, activated carbon, etc.) and a second transition metal (e.g., Mo, Co, or Fe) in Ni‐based catalysts. Therefore, the activity of Ni‐based catalysts at low temperatures needs to be improved. In this study, a series of mesoporous activated carbon (AC) supported bimetallic Ni–Mo catalysts (Ni–xMo/AC, Ni = 13 wt.%, x = 5, 7, 9, 11 wt.%) were synthesized using the incipient wetness impregnation method. The effect of Mo content on the catalyst's activity was examined in a fixed‐bed reactor. At 250–650°C, 1‐atmosphere pressure, gas hourly space velocity (GHSV): 1200 mL h−1 g−1, and H2/CO2 ratio: 4:1, the catalytic efficiency of these catalysts was examined. The catalysts were analyzed using transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), X‐ray powder diffraction (XRD), N2‐physisorption, and scanning electron microscopy/energy dispersive X‐ray spectroscopy (SEM‐EDX). Ni–7%Mo/AC catalyst showed the lowest carbon deposition rate, superior stability, and the best activity. The addition of Mo can improve the heat resistance of the Ni/AC catalyst and the interaction between the metal nickel and the support, which prevents the sintering of the catalyst. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call