Abstract

Designing donor/acceptor (D/A) interfaces that can efficiently generate free carriers is an attractive research target for organic photovoltaics (OPVs). While many reports suggest that the molecular orientation of the donor at the D/A interface influences the free-charge generation and recombination, the effects of the acceptor orientation on these processes remain elusive. In this work, we demonstrate that [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) changes its molecular orientation at the film surface on crystallization, resulting in the preferential surface exposure of the side chains. Photoelectron spectra of amorphous- and crystalline-PC61BM/sexithiophene (6T) interfaces and analysis of the external quantum efficiency and electroluminescence of bilayer OPVs in the charge-transfer absorption range reveal that the orientational change of PC61BM raises the energy of the charge-transfer state at the D/A interface. In addition, the PC61BM side chain at the crystalline-PC61BM/6T interface reduces t...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call